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Abstract. We calculate the Coulomb drag current created in the ballistic transport regime in
a one-dimensional nanowire by a ballistic current in a nearby nanowire. We predict sharp
oscillations of the drag current as a function of the gate voltage or chemical potential. Our
results may be of relevance to the issue of the cross-wire talk which is of pivotal importance to
the proper operation of scaled-down devices and VLSI circuits.

The purpose of the present paper is to work out a theory of the Coulomb electron drag
created in the course of ballistic electron transport in a nanowire due to a ballistic current in
an adjacent nanowire. The possibility of observing the Coulomb drag effect was suggested
by Pogrebinski [1]. Later on, the effect was considered for various geometries by a number
of authors [2–7]. Of a vast number of papers in which the Coulomb drag has been treated,
we refer here only to a few that are more closely related to the present one.

In the present paper we consider the Coulomb drag for the special case of so-called
collisionless transport. The latter is treated in the spirit of the Landauer–Büttiker–Imry [8]
approach to the electrical conduction in nanoscale structures. The electron motion through
such nanostructures is collisionless, while nanostructures act effectively as waveguides. This
is possible since the largest dimension of the structure is smaller than the electron mean
free path in the problem (typically a fewµm). Such nanoscale systems are characterized
by low electron densities, which may be varied by means of the gate voltage. The transport
of electrons in such a regime is calledballistic and is a quantum mechanical analogue of
Sharvin’s 3D classical point contact conductance [9].

The electron–phonon scattering in such wires leads to a number of effects that have
been recently considered in the literature [10–14]. We will use a further development of the
method worked out in these papers for consideration of the electron–electron interaction.
This interaction within a single nanowire does not result in a current variation because
of the quasimomentum conservation in the electron–electron collisions. However, if two
such wires, 1 and 2, are near one another and are parallel, the Coulomb interaction of the
electrons belonging to the different wires should result in the drag which we investigate in
this paper. The drag force due to the ballistic current in wire 2 acts as a sort of permanent
acceleration on the electrons of wire 1. As wire 1 has a finite lengthL, a steady drag
currentJ is established in wire 1. In the present paper we calculate this current.
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Let us consider the conservation laws for the collisions of electrons belonging to two
different wires, 1 and 2, each of them being parallel to thex-axis. We have

ε(1)np + ε(2)n′p′ = ε(1)l,p+q + ε(2)l′,p′−q (1)

where ε(1,2)np = ε(1,2)n (0) + p2/2m, m being the effective mass whilen is the trans-
verse quantization band (channel) index, with primed quantities corresponding to wire 2
throughout.

Introducing the notation

δε = ε(1)n (0)+ ε(2)n′ (0)− ε(1)l (0)− ε(2)l′ (0) (2)

the solution of equation (1) can be rewritten as

q = −(p − p′)/2±
√
(p − p′)2/4+mδε. (3)

We will assume that the electrons of the nanowires are degenerate and that the
temperature is sufficiently low. The absolute values of the four quantities, namely,ε(1)np ,

ε
(2)
n′p′ , ε

(1)
l,p+q , andε(2)l′,p′−q , should lie within the stripeskBT around the corresponding Fermi

levels. In other words, within the accuracymkBT/pF , the following relations should be
valid: p = p(n)F , p′ = p(n

′)
F , and

|p + q| = p(l)F |p′ − q| = p(l′)F . (4)

Here p(n)F denotes the Fermi quasimomentum for bandn. In general it is impossible by
variation of a single quantity, such as the transferred quasimomentumq, to satisfy both of
the relations of equation (4) (provided, of course, that the distances between the channel
bottoms are much bigger thankBT ).

In other words, if the differences between the levels of transverse quantization are bigger
thankBT one cannot in general satisfy equation (1) for a finiteδε. Therefore for a general
case one should haven = l, n′ = l′. If the two wires are identical, the pair of relations
n = l′, n′ = l is also possible. In both cases,δε = 0. We will assume the wires to be
different. Then theδ-function

δ(ε(1)np + ε(2)n′p′ − ε(1)l,p+q − ε(2)l′,p′−q)
can be recast into the form

(m/|q|)δ(p − p′ + q). (5)

This means that the quasimomentum transferred during a collision isq = p′ − p. In other
words, the electrons swap their quasimomenta as a result of collisions.

Assuming that the drag current in wire 1 is much smaller than the ballistic current in
wire 2, we calculate it by solving the Boltzmann equation for wire 1 (otherwise we should
have solved a system of coupled equations for the two wires). We have

vnp
∂F (1)

∂p
= I (12){F (1), F (2)} (6)

whereF (1,2) are the electron distribution functions in wires 1 and 2 respectively, and

I (12){F (1), F (2)} = 2
∑
p′

∑
q

∑
n′
w(1, p + q, n; 2, p′ − q, n′ ← 1, p, n; 2, p′, n′)

× [F (1)np F
(2)
n′p′(1− F (1)n,p+q)(1− F (2)n′p′−q)

− F (1)n,p+qF
(2)
n′p′−q(1− F (1)np )(1− F (2)n′p′)]. (7)
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Here, 2 is the spin factor; the scattering probabilities are assumed to be spin independent. If
the electron–electron collisions can be described by perturbation theory, then the scattering
probability is given by

w(1, p + q, n,2, p′ − q, n′ ← 1, p, n; 2, p′, n′)
= 2π

h̄
|〈1, p + q, n; 2, p′ − q, n′|V |1, p, n; 2, p′, n′〉|2

× δ(ε(1)np + ε(2)n′p′ − ε(1)n,p+q − ε(2)n′,p′−q). (8)

The matrix element of the electron–electron interaction can be transformed into the form

〈1, p + q, n; 2, p′ − q, n′|V |1, p, n; 2, p′, n′〉
= 1

L

∫
d2r⊥

∫
d2r ′⊥ φ

∗
n(r⊥)φ

∗
n′(r

′
⊥)Vq(r⊥ − r′⊥)φn(r⊥)φn′(r′⊥) (9)

where

Vq =
∫

dx V (x, r⊥) exp(−iqx/h̄).

We have ∫
dx
∫

dx ′ V (r − r′) exp[iq(x − x ′)/h̄] = 2e2LK0(|q||1r⊥|/h̄) (10)

where1r⊥ = r⊥ − r′⊥, andK0 is a modified Bessel function defined in reference [15].
To calculate the current in wire 1, we iterate the Boltzmann equation for the electrons

of the wire in the term describing the collisions between the electrons of wires 1 and 2.
In this approximation one can choose the distribution functions in the collision term to be
equilibrium ones. For the first wire we will denote them asF (0)np = f (ε(1)np − µ), F (0)l,p+q =
f (ε

(1)
l,p+q − µ), and we will use analogous notation for the second wire.
We assume, in the spirit of the Landauer–Büttiker–Imry [8] approach, the quantum wire

to be connected to reservoirs which we call ‘left’(+) and ‘right’ (−), each of these being
in independent equilibrium. Let thex-component of the quasimomentum of an electron
in wire 2 before the scattering bep′ and let that after the scattering by an electron of
wire 1 bep′ − h̄q. Let p′ > 0 while p′ − h̄q < 0. Then the first distribution function
for wire 2 depends on the chemical potentialµ(+) while the second one depends onµ(−),
whereµ(+) − µ(−) = eV . We assume that ateV = 0 the wires are in equilibrium. We
denote the corresponding equilibrium chemical potential asµ.

Let us denote by1{F } the expression that one gets after substitution of the equi-
librium distribution functions given above into the collision term. Forp′ > 0 (p′ < 0) and
p′ − q < 0 (p′ − q > 0), wherep′ is the electron quasimomentum in wire 2 before the
scattering, we get

1{F (1), F (2)} = ±2 sinh

(
eV

2kBT

)
exp

(
ε′ − µ
kBT

)
× [1− f (ε(1)np − µ(+))][1 − f (ε(2)n′,p′ − µ)]f (ε(1)n,p+q − µ(−))f (ε(2)n′,p′−q − µ)

(11)

where

ε
(1)
n,p+q − ε(1)np = ε(2)n′,p′ − ε(2)n′,p′−q = (p′2− p2)/2m (12)

is the energy transferred in an electron–electron collision. The above expression is
identically zero if the initial and final quasimomenta in wire 2 are of the same sign. At low
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kBT , it follows from the relationq = p′ − p that the initial and final quasimomenta,p and
p + q respectively, are of opposite sign as well.

As we are only interested in the Ohmic case, we will replace sinh(eV/2kBT ) by its
argument and replace all of the chemical potentials in equation (11) by the same valueµ.
As a result, we get

1{F (1), F (2)} = ±(eV/kBT )[1− f (ε(1)np − µ(+))]
× [1− f (ε(2)n′,p′ − µ)]f (ε(1)n,p+q − µ(−))f (ε(2)n′,p′−q − µ). (13)

To calculate the current, we iterate the Boltzmann equation (6) in the collision term.
The first iteration is

1f =
(
∓L

2
+ x

)
1

v
I 12
n,p (14)

for p > 0 andp < 0, respectively. The total drag current is

J = 2e

(
−L

2
+ x

)∑
n

∫ ∞
0

dp

2πh̄
I 12
n,p + 2e

(
L

2
+ x

)∑
n

∫ 0

−∞

dp

2πh̄
I 12
n,p (15)

where

I 12
n,p =

16πe4

h̄κ2

∑
n′

∫
dp′

2πh̄

∫
dq

2πh̄
gnn′(q)1{F (1), F (2)}δ(ε(1)np + ε(2)n′p′ − ε(1)l,p+h̄q − ε(2)l′,p′−h̄q ).

(16)

Hereκ is the dielectric susceptibility of the lattice which we assume to be the same within
and outside the nanowires, and

gnn′(q) =
∣∣∣∣∫ d2r⊥

∫
d2r ′⊥ |φn(r⊥)|2|φn(r ′⊥)|2K0(q|1r⊥|/h̄)

∣∣∣∣2 . (17)

The limits of the integration overq are determined by the requirement thatp′ andp′−q
be of different signs. As a result, we get the following equation for the drag current:

J =
∑
nn′
Jnn′

where

Jnn′ = 4e6V

π2h̄4kBT
(j
(1)
nn′ + j (2)nn′ + j (3)nn′ + j (4)nn′ ). (18)

Here

j
(1)
nn′ =

(
−L

2
+ x

)∫ ∞
0

dp
∫ ∞

0
dp′

∫ ∞
p′

dq gnn′(q)B(p, p
′;p + q, p′ − q)

j
(2)
nn′ = −

(
−L

2
+ x

)∫ ∞
0

dp
∫ 0

−∞
dp′

∫ −p′
−∞

dq gnn′(q)B(p, p
′;p + q, p′ − q)

j
(3)
nn′ =

(
L

2
+ x

)∫ 0

−∞
dp
∫ ∞

0
dp′

∫ ∞
p′

dq gnn′(q)B(p, p
′;p + q, p′ − q)

j
(4)
nn′ = −

(
L

2
+ x

)∫ 0

−∞
dp
∫ 0

−∞
dp′

∫ −p′
−∞

dq gnn′(q)B(p, p
′;p + q, p′ − q)

and we have introduced the notation

B(p, p′;p + q, p′ − q)
= Fnp(1− Fn,p+q)Fn′p′(1− Fn′,p′−q)δ(ε(1)np + ε(2)n′p′ − ε(1)n,p+q − ε(2)n′,p′−q). (19)
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After a transformation of the integration variables, the terms proportional tox cancel
(as they should because of charge conservation), while the terms proportional toL add in
the following way:

j
(1)
nn′ + j (2)nn′ + j (3)nn′ + j (4)nn′ = L

∫ ∞
0

dp

[∫ 0

−∞
dp′

∫ −p′
−∞

dq gnn′(q)B(p, p
′;p + q, p′ − q)

−
∫ ∞

0
dp′

∫ ∞
p′

dq gnn′(q)B(p, p
′;p + q, p′ − q)

]
. (20)

This expression can be calculated using the transformation of theδ-function given by
equation (5). In this way one can see that the second term in the square brackets in
equation (20) vanishes while the first term, after a transformation, gives for the drag current

J = 4e6mVL

π2κ2h̄4kBT

∑
nn′

∫ ∞
0

dp q
∫ ∞

0
dp′

1

p + p′ gnn′(p + p
′)

× f (ε(1)np − µ)[1− f (ε(1)np′ − µ)]f (ε(2)n′p′ − µ)[1− f (ε(2)n′p − µ)]. (21)

Let us at first consider the terms of the sum in equation (21) withε(1)n (0) 6= ε(2)(0). We
number the levels of transverse quantization up from the lowest one. For definiteness, let
us assume thatε(1)n (0) > ε

(2)
n′ (0). We will also assume that the differencesε(1)n (0)− ε(2)n′ (0)

are much bigger thankBT . Thenf (ε(1)np − µ) can be considered as a step function, and the

limits of the integral over dp are determined by the productf (ε(1)np −µ)[1− f (ε(2)n′,p −µ)].
The first factor determines the upper limit as

p
(n)
F =

√
2m[µ− ε(1)n (0)].

The second factor gives the lower limit as

p
(n′)
F =

√
2m[µ− ε(2)n′ (0)].

At the same time one can see that the factorf (ε
(2)
n′p′ − µ)[1 − f (ε(1)n,p′ − µ)] and therefore

also the integral over dp′ vanish within the accepted approximation. For the same reason,
the integral over dp vanishes forε(2)n′ (0) > ε(1)n (0).

Now we are left with the terms of the sum withε(1)n (0) = ε(2)n′ (0) (the equality should be
fulfilled at least with an accuracy of the order ofkBT—see below). To calculate these terms
one cannot use the step function approximation, as the integral in equation (21) is dominated
by the contribution of thermal layer near the Fermi level. To calculate the integrals over
dp and dp′, we will use the following identity:

f (εnp − µ)[1− f (εn,p − µ)] = −kBT ∂f (εnp − µ)
∂εnp

. (22)

This is a sharply peaked function of the electron energy. Provided that the rest of the
functions in the integrand are smooth on the energy scalekBT , they can be taken out of the
integrand atp = pF . As a result, for every coincidence

ε(1)n (0) = ε(2)n′ (0) (23)

we get the following contribution to the Coulomb drag current:

J =
∑
nn′
J
(0)
nn′ (24)
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where

J
(0)
nn′ =

e5m3LkBT eV

2π2κ2h̄4

1

p3
n

gnn′(2pn) (25)

in which the channel quasimomentum is

pn =
√

2m[µ− ε(1)n (0)].
For the case in which there is no full coincidence (i.e.ε(1)n (0) 6= ε(2)n′ (0)), we can generalize
our calculation to include temperature dependence of the drag current. Assuming that there
is only one pair of coinciding levels, and therefore omitting the summation overn, and
taking out of the integral all of the slowly varying functions, we get

J = J (0)L(a, b)L(b, a)
wherea = ε(1)n (0)/kBT while b = ε(2)n′ (0)/kBT . Here

L(a, b) =
∫ ∞
−∞

ex−b dx

(1+ ex−a)ex−b
= a − b

1− eb−a
.

Finally, we get for the drag current

J = e5m3LkBT eV

2π2κ2h̄4

1

pn3
gnn(2pn)

[ε(1)n (0)− ε(2)n′ (0)]2

4(kBT )2

[
sinh

ε(1)n (0)− ε(2)n′ (0)
2kBT

]−2

. (26)

The ratio of the drag current to the ballistic current

Jb = N e2

πh̄
V (27)

whereN is the number of active channels (i.e. of 1D bands whose bottoms are below the
Fermi level) is given forε(1)n (0) = ε(2)n′ (0) by

J

Jb
= e4m3LkBT

2πh̄3κ2N
∑
nn′

1

p3
n

gnn′(2pn). (28)

Equations (25)–(28) were also obtained by us using the quantum linear response theory
of reference [13]. Including elastic scattering leads to the replacement ofgnn′ by gnn′T (1)n T

(2)
n′

whereT (i)n is the transmission probability. We also showed that the reflections do not change
the nullity of the effect on current of the Coulomb interactions within one nanowire.

There are no experiments yet on wire-to-wire coulomb drag, to our knowledge. Two
recent experimental papers, [16] and [17], on the plane-to-plane Coulomb drag also include
a number of references on that.

The subband structure is controlled by the gate voltage which changes the effective
wire channel width and hence a threshold of propagation in each subband. In general the
variation of the gate voltage may affect the widths and therefore the positions of the levels
of transverse quantization in the two wires in different ways. As a result, in the course
of the gate voltage variation a coincidence of a pair of such levels in the two wires may
be reached. The estimate (28) is not very sensitive to the forms of the confining potential
and electron densities. For the estimate, we assume the potential to be rectangular and
µ = 14 meV, T = 1 K, W2 = 42 nm,L = 1 µm, κ = 13. The spacing between the
wires is assumed to be 50 nm. In figure 1 the ratio in (28) is plotted as a function of
the ratio of the effective wire widths. This plot exhibits striking oscillations with gigantic
peak-to-valley ratios. The peaks occur when the channel velocities in two interacting wires
are equal, which happens whenever any two current-carrying channels line up. This sort of
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Figure 1. J/Jb is plotted as a function ofW1/W2 where the width of wire 1 is controlled
through the gate voltage (µ = 14 meV,T = 1 K, W2 = 42 nm,L = 1 µm, κ = 13, and the
spacing between the wires is 50 nm).

coupling is particularly strong when such channel velocities are also quite small. The width
of wire 1 can be controlled through the gate voltage.

To obtain an order-of-magnitude estimate, we can consider the following example. A
current of 10µA in wire 1 is realistic, and under favourable conditions can produce a
current as large as 10−1 µA in wire 2 at special gate voltages (see figure 1). The latter
value can be easily measured in experiment.

In this paper we have investigated a Coulomb drag mutually affecting quantum wires.
We predict giant oscillations in the drag current caused in one wire by an electrical current
in the other, as a function of the gate voltage. The peaks of the giant oscillations in the drag
current occur whenever the channel velocities of the electrons near the Fermi levels in the
two different wires coincide. (The importance of equal channel velocities was also pointed
out by Vasilopoulos and Sirenko in reference [7], where they calculated a frictional force
caused by Coulomb drag.) These peaks are particularly strong if the coinciding channel
velocities are rather small. At the same time, they are assumed to be sufficiently big that
for our approach the perturbation theory is still applicable. The coincidence of the channel
velocities in the two wires can be achieved by variation of the gate voltage.

In the case considered, wire 2 is a part of a standard structure for measurement of a
ballistic conductance, i.e. it joins two classical reservoirs, each of them being in independent
equilibrium. However, wire 1 can be, for example, a part of a ballistic short-circuited
structure, in which the value of the drag current may be found by measuring a corresponding
magnetic flux.

Our results have several consequences: firstly, in connection with the issue of cross-
wire talk which is of pivotal importance to the proper operation of scaled-down devices
and VLSI circuits, according to our findings, one should be able to engineer circuitry so as
to minimize the effects of cross-wire talk (for instance, by avoiding the level coincidence
(26) as much as possible); secondly, one can investigate band structure, making use of
the extreme sensitivity of the lining up of the levels; and lastly, this effect may play an
important role in the direct investigation of Coulomb scattering.
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